被动攻击算法

什么是被攻击算法 **(Passive Aggressive Algorithms)** ?

被动攻击算法如何进行分类任务?

  • 用于大规模学习的一系列算法。它们与感知器相似,因为它们不需要学习率。然而,与感知器相反,它们包含一个正则化参数 c
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
     >>> from sklearn.linear_model import PassiveAggressiveClassifier
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_features=4, random_state=0)
    >>> clf = PassiveAggressiveClassifier(max_iter=1000, random_state=0,
    ... tol=1e-3)
    >>> clf.fit(X, y)
    PassiveAggressiveClassifier(random_state=0)
    >>> print(clf.coef_)
    [[0.26642044 0.45070924 0.67251877 0.64185414]]
    >>> print(clf.intercept_)
    [1.84127814]
    >>> print(clf.predict([[0, 0, 0, 0]]))
    [1]

被动攻击算法如何进行回归任务?

  • 被动进取回归器
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
     >>> from sklearn.linear_model import PassiveAggressiveRegressor
    >>> from sklearn.datasets import make_regression

    >>> X, y = make_regression(n_features=4, random_state=0)
    >>> regr = PassiveAggressiveRegressor(max_iter=100, random_state=0,
    ... tol=1e-3)
    >>> regr.fit(X, y)
    PassiveAggressiveRegressor(max_iter=100, random_state=0)
    >>> print(regr.coef_)
    [20.48736655 34.18818427 67.59122734 87.94731329]
    >>> print(regr.intercept_)
    [-0.02306214]
    >>> print(regr.predict([[0, 0, 0, 0]]))
    [-0.02306214]